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Abstract. A popular curve shown in introductory maths textbooks,
seems like a circle. But it is actually a different curve. This paper dis-
cusses some elementary approaches to identify the result, including novel
technological means by using GeoGebra. We demonstrate 2 ways to re-
fute the false conjecture, 2 ways to find a correct conjecture, and 4 ways
to confirm the result by proving.

All of the discussed approaches can be introduced in classrooms at vari-
ous levels from middle school to high school.
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1 But it looks like a circle

One possible anti boredom activity is to simulate string art in a chequered note-
book. This kind of activity is easy enough to do it very early, even as a child
during the early school years. The resulting curve, the contour of the “strings”,
or more precisely, a curve whose tangents are the strings, is called an envelope.



According to Wikipedia [1], an envelope of a family of curves in the plane
is a curve that is tangent to each member of the family at some point.1 Let us
assume that the investigated envelope, which is defined similarly as the learner
activity in Fig. 1, is a circle. In the investigated envelope it will be assumed
that a combination of 4 simple constructions is used, the axes are perpendicular,
and the sums of the joined numbers are 8. To be more general, these sums may
be changed to different (but fixed) numbers. These sums will be denoted by d
to recall the distance of the origin and the furthermost point for the exterior
strings.

Fig. 1. An activity for young learners on the left: Join the numbers on each ray by a
segment to make sums 16 [3]. Such activities are also called ‘string art’ when they are
performed by sewing a thread on some fabric or other material. On the right there is
a combinination of 4 simple constructions, but produced in a different layout than the
one shown at the beginning of this paper [4].

By using the assumption of the circle property, in our case the family of the
strings must be equally far from the center of the circle. Due to symmetry of the
4 parts of the figure, the only possible center for the circle is the midpoint of the
figure. Let us consider the top-left part of the investigated figure (Fig. 2). On the
left and the top the strings AB and BC have the distance d = OA = OC from
center O. On the other hand, the diagonal string DE has distance OF = 3

4 ·d·
√

2
from the assumed center, according to the Pythagorean theorem. This latter
distance is approximately 1.06 · d, that is, more than d. Consequently, the curve
cannot be an exact circle. That is, it is indeed not a circle.

In schools the Pythagorean theorem is usually introduced much later than
the students are ready to simply measure the length of OA and OF by using
a ruler. The students need to draw, however, a large enough figure because

1 This definition is however ambiguous: the Wikipedia page lists other non-equivalent
ways to introduce the notion of envelopes. See [2] for a more detailed analysis on the
various definitions.



Fig. 2. Considering three strings from the family and their distance from the assumed
center

the difference between OA and OF is just about 6%. Actually, both methods
obviously prove that the curve is different from a circle, and the latter one can
already be discussed at the beginning of the middle school.

2 OK, it is not a circle—but what is it then?

Let us continue with a possible classroom solution of the problem. Since the
strings are easier to observe than the envelope, it seems logical to collect more
information about the strings. Extending the definition of the investigated enve-
lope by continuing the strings to both directions, we learn how the slope of the
strings changes while continuing the extension more and more (Fig. 3).

The strings in the extension support the idea that the tangents of the curve,
when |n| is large enough, are almost parallel to the line y = −x. This observation
may refute the opinion that the curve is eventually a hyperbola (which has two
asymptotes, but they are never parallel).

On the other hand, by changing the segments in Fig. 3 to lines an obvious
conjecture can be claimed, that is, the curve is a parabola (Fig. 4). Thus the
observed curve must be a union of 4 parabolic arcs.

3 We have a conjecture—can we verify that?

A GeoGebra applet in Fig. 5 can explicitly compute the equation of the envelope
and plot it accurately. (See [2] for a detailed survey on the currently available



Fig. 3. Let us assume that d = 10 and create a GeoGebra applet as seen in the figure.
(Actually, an arbitrary d can be chosen without loss of generality.) Now slider n in
range [−20, 30] with integer values creates points A = (n, 0) and B = (0, n− 10). The
family of segments AB may enlighten which curve is the investigated one.

Fig. 4. Instead of segments as in Fig. 3 we use lines



software tools to visualize envelopes dynamically.) For technical reasons a slider
cannot be used in this case—instead a purely Euclidean construction is required
as shown in the figure. Free points A and B are defined to set the initial param-
eters of the applet, and finally segment g = CC ′′ describes the family of strings.
The command Envelope[g,C] will then produce an implicit curve, which is in
this concrete case x2 + 2xy − 20x + y2 + 20y = −100.

Fig. 5. A GeoGebra applet to compute and plot the parabola. Thanks to Michel Iroir
and Noël Lambert for suggesting this construction method. A similar approach can be
found at http://dev.geogebra.org/trac/browser/trunk/geogebra/test/scripts/

benchmark/art-plotter/tests/string-art-simple.ggb.

GeoGebra uses heavy symbolic computations in the background to find this
curve [5]. Since they are effectively done, the user may even drag points A and
B to different positions and investigate the equation of the implicit curve. They
are recomputed quickly enough to have an overview on the resulted curve in
general—they are clearly quadratic algebraic curves in variables x and y.

Without any deeper knowledge of the classification of algebraic curves, of
course, young learners cannot really decide whether the resulted curve is indeed
a parabola. Advanced learners and maths teachers could however know that all
real quadratic curves are either circles, ellipses, hyperbolas, parabolas, a union
of two lines or a point in the plane. As in the above, we can argue that the
position of the strings as tangents support only the case of parabolas here.

On the other hand, for young learners we can still find better positions for A
and B. It seems quite obvious that the curve remains definitely the same (up to
similarity), so it is a free choice to define the positions of A and B. By keeping
A in the origin and putting B on the line y = −x we can observe that the
parabola is in the form y = ax2 + bx + c which is the usual way how a parabola
is introduced in the classroom. (In our case actually b = 0.) For example, when
B = (10,−10), the implicit curve is x2 + 20y = −100, and this can be easily
converted to y = − 1

20x
2 − 5 (Fig. 6).

This result is computed by using precise algebraic steps in GeoGebra. One
can check these steps by examining the internal log—in this case 16 variables



Fig. 6. By choosing B = (10,−10) we obtain a simpler equation for the implicit curve

and 11 equations will be used including computing a Jacobi determinant and a
Gröbner basis when eliminating all but two variables from the equation system.
That is, GeoGebra actually provides a proof, albeit its steps remain hidden for
the user. (Showing the detailed steps when manipulating on an equation system
with so many variables makes no real sense from the educational point of view:
the steps are rather mechanical and may fill hundreds of pages.)

As a conclusion, it is actually proven that the curve is a parabola. Of course,
learners may want to understand why it that curve is.

4 Proof in the classroom

Here we provide two simple proofs on the fact that the envelope is a parabola
in Fig. 6. The first method follows [6].

We need to prove that segment CC ′′ is always a tangent of the function
y = − 1

20x
2−5. First we compute the equation of line CC ′′ to find the intersection

point T of CC ′′ and the parabola.
We recognize that if point C = (e,−e), then point C ′′ = (e− 10, e− 10).
Now we have two possible approaches to continue.

1. Since line CC ′′ has an equation in form y = ax+ b, we can set up equations
for points C and C ′′ as follows:

−e = a · e + b (1)

and
e− 10 = a · (e− 10) + b. (2)

Now (1)−(2) results in a = 1 − 1
5e and thus, by using (1) again we get

b = −2e + 1
5e

2.
Second, to obtain intersection point T we consider equation ax+b = − 1

20x
2−

5 which can be reformulated to search the roots of quadratic function 1
20x

2+
ax+b+5. If and only if the discriminant of this quadratic expression is zero,
then CC ′′ is a tangent. Indeed, the determinant is a2−4· 120 ·(b+5) = a2− b

5−1
which is, after inserting a and b, obviously zero.



2. Another method to show that CC ′′ is a tangent of the parabola is to use
elementary calculus. School curricula usually includes computing tangents
of polynomials of the second degree.
Let T = (t,− 1

20 t
2 − 5). Now the steepness of the tangent of the parabola

in T is (− 1
20 t

2 − 5)′ = − 1
10 t. It means that the equation of the tangent is

y = − 1
10 tx + b, here b can be computed by using x = t and y = − 1

20 t
2 − 5,

that is b = 1
20 t

2 − 5. The equation of the tangent is consequently

y = − 1

10
tx +

1

20
t2 − 5. (3)

Let us assume now that C and C ′′ are the intersections of the tangent and
the lines y = −x and y = x, respectively. The x-coordinate of C can be
found by putting y = −x in (3), it is

xC =
1
20 t

2 − 5
1
10 t− 1

.

On the other hand, the x-coordinate of C ′′ can be found by putting y = x
in (3), it is

xC′′ =
1
20 t

2 − 5
1
10 t + 1

.

By using some basic algebra it can be confirmed that xC − 10 = xC′′ , that
is CC ′′ is indeed a string.

The second proof is technically longer than the first one but still achievable
in many classrooms.

Both approaches are purely analytical proofs without any knowledge of the
synthetic definition of a parabola. The fact is that in many classrooms, unfortu-
nately, the synthetic definition is not introduced or even mentioned.

5 A synthetic approach

In the schools where the synthetic definition of a parabola is also introduced,
the most common definition is that it is the locus of points in the plane that are
equidistant from both the directrix line ` and the focus point F .

5.1 An automated answer

Without any further considerations it is possible to check (actually, prove) that
the investigated curve is a parabola also in the symbolic sense. To achieve this re-
sult one can invoke GeoGebra’s Relation Tool [7] after constructing the parabola
synthetically as seen in Fig. 7.

Here the focus point F is the midpoint of BB′, and the directrix line ` is a
parallel line to BB′ through A. This piece of information should be probably



Fig. 7. A synthetic way to construct the investigated parabola in GeoGebra

kept secret by the teacher—the learners could find them on their own. Now to
check if the string g is indeed a tangent of the parabola the tangent point T has
been created as an intersection of the string and the parabola. Also a tangent
line j has been drawn, and finally line g′ which is the extension of segment g to
a full line. At this point it is possible to compare g′ and j by using the Relation
Tool. (Note that g′ is disabled for the Graphics View in Fig. 7 to avoid mistaking
it for j. That is, by the comparison g′ should be selected in the Algebra View on
the left.)

The Relation Tool first compares the two objects numerically and reports
that they are equal. By clicking the “More. . .” button the user obtains the sym-
bolic result of the synthetic statement (Fig. 8).

Fig. 8. Symbolic check of the synthetic statement in GeoGebra 5.0.354.0. Here “under
certain conditions” mean that the statement holds in general, but there may be some
extra prerequisites like avoiding degenerate positions of the free points, which cannot
be further described by GeoGebra [8].

We recall that despite the construction was performed synthetically, the sym-
bolic computations were done after translating the construction to an algebraic



setup. Thus GeoGebra’s internal proof is again based on algebraic equations and
still hidden for the user. But in this case we indeed have a general proof for each
possible construction setup, not for only one particular case as for the Envelope

command.

5.2 A classical proof

Finally we give a classical proof to answer the original question. Here every detail
uses only synthetic considerations.

The first part of the proof is a well known remark on the bisection property
of the tangent. That is, by reflecting the focus point about any tangent of the
parabola the mirror image is a point of the directrix line. (See e.g. [6], Sect. 3.1
for a short proof.) Clearly, it is sufficient to show that the strings have this kind
of bisection property: this will result in confirming the statement.

In Fig. 9 the tangent to the parabola is denoted by j. Let F ′ be the mirror
image of F about j. We will prove that F ′ ∈ `. Let G denote the intersection of
j and FF ′. Clearly 6 CGF and 6 C ′′GF are right because of the reflection.

Fig. 9. A classical proof

By construction4FBC and4FAC ′′ are congruent. Thus FC = FC ′′. More-
over, 4CFC ′′ is isosceles and FG is its bisector at F , in addition, CG = C ′′G.

Let n denote a parallel line to AB through C ′′. Let E be the intersection of
` and n. Also let H be the intersection of j and `, and let I be the intersection
of j and the line BB′. Since ` and BB′ are parallel, moreover AB and n are also



parallel, and EC ′′ = CB (because E is actually the rotation of A around C ′′ by
90 degrees), we conclude that 4C ′′EH and 4CBI are congruent. This means
that IC = C ′′H.

That is, using also CG = C ′′G, G must be the midpoint of HI, thus G lies
on the mid-parallel of ` and BB′. As a consequence, reflecting F about G the
resulted point F ′ is surely a point of line `.

6 Notes

The above properties of the string art envelope are well known in the literature
on Bezier curves, but usually not discussed in maths teacher trainings. The de
Casteljeau algorithm for a Bezier curve of degree 2 is itself a proof that the curve
is a parabola. (See [9, 10] for more details.)

Also among maths professionals this property seems rarely known. A recent
example of a tweet of excitement is from February 2017 (Fig. 10).

Fig. 10. Another way to experiment with the string art parabola [11]

On the other hand, our approach highlighted the classroom introduction of
the string art parabola, and suggested some very recent methods by utilizing
computers in the middle and high school to improve the teacher’s work and the
learners’ skills.

Lastly, we remark that the definition of the string art envelope looks similar
to the envelope of other family of lines. For example, the envelope of the sliding
ladder results in a different curve, the astroid [1,12,13], a real algebraic curve of
degree 6. While “physically” that is easier to construct (one just needs a ladder-
like object, e. g. a pen), the geometric analysis of that is more complicated and



usually involves partial derivatives. (See also [1] on a proof for identifying the
string art parabola by using partial derivatives.)

7 Conclusion

An analysis of the string art envelope was presented at different levels of math-
ematical knowledge, by refuting a false conjecture, finding a true statement and
then proving it with various means.

Discussion of a non-trivial question by using different means can give a better
understanding of the problem. What is more, reasoning by visual “evidence” can
be misleading, and only rigorous (or rigorous but computer based) proofs can be
satisfactory.

Acknowledgments

The author thanks Tomás Recio and Noël Lambert for comments that greatly
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