Eratosthène

Gilles Aldon

Lycée Jacques Brel IREM de Lyon

7 Janvier 2007

æ

How is it possible to measure the radius of a ball, staying on the surface of the sphere?

How is it possible to measure the radius of a ball, staying on the surface of the sphere?

This was exactly the problem Eratosthenes of Cyrene (275-194 BC) tried to solve.

How is it possible to measure the radius of a ball, staying on the surface of the sphere?

This was exactly the problem Eratosthenes of Cyrene (275-194 BC) tried to solve.

This greek astronomer and mathematician is remembered for his ingenious determination of the circumference of the earth, by determinating the radius of the earth.

The Eratosthenes method

It reposes firstly on some mathematical results :

It reposes firstly on some mathematical results :

Result 1 : let *I* be transversal to two parallel lines I_1 and I_2 at points *A* and *B* as schown on the figure. The two angles α and β have the same measure. They are said to be alterne interior angles.

It reposes firstly on some mathematical results :

Result 1 : let *I* be transversal to two parallel lines I_1 and I_2 at points *A* and *B* as schown on the figure. The two angles α and β have the same measure. They are said to be alterne interior angles.

Result 2 : Radian (or circular) measure of angles is based on an arc of a circle of radius 1 with centre at the vertex of the angle: the measure of the angle is the length of the arc. If r is the radius of the circle and l the length of arc subtending the angle, then the angle is $\frac{l}{r}$ radians.

Result 2 : Radian (or circular) measure of angles is based on an arc of a circle of radius 1 with centre at the vertex of the angle: the measure of the angle is the length of the arc. If r is the radius of the circle and l the length of arc subtending the angle, then the angle is $\frac{l}{r}$ radians.

Result 3 : In a right angle triangle, the tangent is the ratio of the opposite side by the adjacent side.

In the earth is a perfect sphere (which is not actually true).

- The earth is a perfect sphere (which is not actually true).
- 2 The sun rays are parallel.

- The earth is a perfect sphere (which is not actually true).
- 2 The sun rays are parallel.
- It's possible to determine exactly the shortest distance between two points on the surface of the earth.

- The earth is a perfect sphere (which is not actually true).
- 2 The sun rays are parallel.
- It's possible to determine exactly the shortest distance between two points on the surface of the earth.
- 4 Locally, the earth is flat.

Question

Using the mathematical results, deduce from the above figure how it is possible to find the radius of the earth :

Question

Using the mathematical results, deduce from the above figure how it is possible to find the radius of the earth :

We will use a sphere to modelize the earth and the light of an overhead projector to modelize the sun.

• What did you do ?

- What did you do ?
- What were the difficulties?

- What did you do ?
- What were the difficulties?
- What are the calculations, the results?

- What did you do ?
- What were the difficulties?
- What are the calculations, the results?
- How can you verify your calculation?

- What did you do ?
- What were the difficulties?
- What are the calculations, the results?
- How can you verify your calculation?
- What are now the difficulties to measure the radius of the earth?

- What did you do ?
- What were the difficulties?
- What are the calculations, the results?
- How can you verify your calculation?
- What are now the difficulties to measure the radius of the earth?
- Write the complete list of what you'll have to do and what you need (material, preparation, first calculation and observation, etc.) to calculate the earth's radius.